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Abstract: Trees are one of the few carbon sinks in urban areas. Different methods are available to
assess the biomass of urban trees, one of these being allometric biomass functions. Biomass functions
are well investigated, reliable and easy to apply if the required information is available. Our goal
is to use biomass functions to enhance urban forest management tools with information on stored
biomass and carbon. In this study, we test several approaches to estimate new species-specific
biomass functions. We include data from urban and traditional forest trees since both origins can
be modeled by the allometric relationship solely giving different parameter estimates. The tested
models include mixed allometric models for urban trees only, the adjustments of available forest
tree biomass models and a cross-classified mixed model (CCMM) using both data from urban and
forest trees. We then show by cross validation that the CCMM, statistically separating the data into
different species and origins, shows greater improvement over the simpler models. Hence, we state
that the inclusion of forest tree data improves the performance on biomass predictions for urban
trees: the urban tree biomass functions “learned from forest trees”. The CCMM is also compared
against the predictions of the above-ground biomass functions applied in the German National Forest
Inventory. Comparable RMSE and slightly lower BIAS values are found, both for deciduous and
coniferous tree species. With the approach of a cross-classified model, we also enable predictions for
non-observed conifers in urban space, assuming comparable growth differences between deciduous
and conifer species in forest stands and urban areas. A sample application using the CCMM model
shows results for a small subset of data of an urban tree inventory, collected in a residential area in
the city of Munich, Germany. It is applied to estimate carbon storage at two points in time and, hence,
carbon fluxes in the period under consideration. Such information can help in the decision making
and management of urban trees.

Keywords: biomass functions; cross-classified mixed model; urban trees; allometric model; carbon sink

1. Introduction

Urban trees provide several ecosystem services, one of them being a carbon storage [1–3].
During the last decades, a lot of research has been undertaken to bring light to the role
of urban forests for carbon sequestration (e.g., [4–8] and many others). In comparison to
traditional forests, the tree density in urban forests is much lower, but nevertheless urban
trees represent a relevant reservoir of carbon and eventually a sink of carbon dioxide in
the urban context (e.g., [9,10]). While urban tree management aims at maintaining or even
enhancing the more obvious urban tree functions (e.g., shading, aesthetics, recreation, see
also Konijnendijk et al. [1]), it might additionally focus on increasing the amount of stored
carbon when it comes to climate protection. This requires methods for determining the
current carbon storage to be able to evaluate the development of this reservoir.
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Knowledge about the urban carbon reservoir and possibly the associated fluxes helps
in understanding the role of urban trees in carbon dioxide emission mitigation for single
trees (e.g., [11]), on the local [8,10,12–18], or nation-wide scale [2,4,6,19,20], to deduce the
total net balance for a specific area [9,21,22], to conduct demand–supply analysis [21,23,24]
for reporting in the context of the United Nations Framework Convention for Climate
Change (UNFCCC) [6], to assess their potential in carbon credit markets (e.g., [25]), to
draw comparisons to other urban (e.g., [17]) or traditional forests (e.g., [19]), build storage
maps [13,26] or to develop management options [26,27] with regard to climate change and
carbon dioxide mitigation.

For the estimation of stored carbon in urban space, several methods were already
developed and applied. On the one hand, there are approaches using remote sens-
ing [6,8,10,12,13,15,17], either based on airborne photogrammetry and/or airborne lidar.
Ground-based lidar, i.e., terrestrial laser scanning (TLS), was applied to estimate single
trees biomass (e.g., [5,7,23,28,29]). On the other hand, the well-established method of
allometric biomass functions is used to estimate tree biomass, which might be upscaled
to the desired spatial level. In some cases, predictors were deduced from remote sensing
analysis [10,13,15,17]. Other studies developed specific biomass functions (e.g., [30,31] for
small trees and Korea, respectively), used equations from nearby locations (e.g., [32]), or
used forest tree biomass function for comparison (e.g., [16]). One obvious use case for
biomass functions is to estimate biomass based on data and attributes stored in a tree
inventory, if respective predictors and functions are available. For such a case, we want to
develop biomass functions and apply these models to already available data. With that, we
can enhance existing management tools by easy means. Remote sensing information is not
easily available and accessible in a permanent manner for such management systems, yet.

Since the amount of stored biomass and, hence, carbon (being approximately half
of the biomass) cannot be easily determined using existing forest tree biomass functions
(e.g., [29,33] and also shown by this study), there is a need to develop specific functions
for urban trees. Likewise, McPherson et al. [34] (p. 8ff) even point out that several factors
might influence tree growth within and between cities. In this context, the authors highlight
management practice, which also depend on regulatory rules. They also state that urban
trees exhibit higher variability in habitus than rural trees. Russo et al. [14] and Strohbach
and Haase [13] also advise to check applicability and comparability, respectively, when
existing methods are applied to new areas. Hence, if new biomass functions for urban trees
are to be developed, this guidance should be kept in mind and a trade-off made between
generality and specificity of the situation at hand.

Biomass functions have already been used for a long time, and an extensive body
of literature exists (see, e.g., [35–37]). Usually, biomass functions relate easy-to-measure
variables, such as diameter in breast height (dbh) and tree height to total or component
mass. Due to this relation, such biomass functions are also termed allometric biomass
functions (see also [38]). In urban areas, one of the main difficulties in developing urban
tree biomass functions is the scarcity of actual measured biomass data since cutting urban
trees is usually not desired. In this study, we aim to develop a set of urban tree biomass
functions to estimate the total above-ground biomass (agb) to be able to calculate stored
carbon in urban tree stands using single tree attributes from well-established management
tools, like communal tree inventories. Additionally, we show a modeling approach capable
of improving these functions by including not only urban tree data but also forest tree
data. In the following, we describe the two data sets for model building and present the
applied regression models. Several alternative models are tested, and the leave-one-out
cross-validation results favor the cross-classified mixed model. We discuss the different
approaches and apply the proposed cross-classified mixed model on example data from a
tree inventory in Munich.
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2. Materials and Methods
2.1. Data

In this study, we could revert on previously generated biomass data from both urban
trees [10] and forest trees [39]. Here, the term “urban trees” refers to rather free-standing
trees grown in urban areas, like streets, gardens and parks. Excluded are trees from small
stand-like structures occurring in urban areas and trees in rural areas. In contrast, “forest
trees” refer to trees grown under light competition in semi-natural stands of larger size
outside the city border and are typically subject to traditional forest management, like
German productive forest stands. In the same sense, we use the terms “urban forests”
and “traditional forests” throughout the text. The urban tree data set contains 164 non-
destructively sampled urban trees of fourteen different tree species from a study conducted
between 2009 and 2011 in Karlsruhe, Germany. These trees were measured by skilled
arborists using the randomized branch-sampling (RBS) protocol (c.f. [40–42]). The study
of Kändler et al. [10] sampled trees for all type of sites, including streets, gardens and
parks based on a pre-selection by orthophotos and cadastre information. This assured
the presence of weak, medium and strong trees, the representativeness of the tree species
according to the tree register and the selection of trees from all parts of the city. Sampling
took place during the end of January and the beginning of March 2010.

Using RBS, the main bole was measured at 0.5 m and 1 m above ground, followed
by 2 m-sections up to the crown. Inside the tree crown, each of three paths from crown
base to bud end were measured for segment length as well as bottom and top diameter
between all knots, i.e., branching points. The total volume was then estimated by expanding
measured segment volume by the path-wise cumulated selection probability based on
all branch base diameters at each knot (for details, see [40,42]). Aggregated volume is
transferred to biomass using specific gravity values of the respective tree species from
literature [43]. The collected data include information about total above-ground biomass,
several diameters along the stem (of which, here we use the diameter in 1 m height above
ground, further called d1), tree height (h), height of green crown (hgc) and remotely sensed
crown diameter (cd, see [10]). The required d1 diameter was not available for all trees
due to early branching. Hence, only 144 complete observations were available, spread
over fourteen deciduous species, each holding three to thirty-two observations. Further
biometric information is given in Table 1, and a graphical overview is given in Figure 1.

Table 1. Overview on sampled urban trees per species. Given are the number of sampled trees per
species (n), mean values for diameter in breast height (dbh, measured in 1.3 m above ground, cm),
diameter in 1 m above ground (d1, cm), tree height (h, m), height of green crown (hgc, m), crown
diameter (cd, m) and above-ground biomass (agb, kg), calculated from volume and specific gravity.

Species Name
n dbh d1 h hgc cd agb

[n] [cm] [cm] [m] [m] [m] [kg]

Acer campestre field maple 5 21.6 21.9 8.8 2.2 6.1 206.3
Acer platanoides Norway maple 32 47.6 48.4 13.9 2.3 10.5 1372.5
Acer pseudoplatanus sycamore maple 3 47.0 48.0 15.6 2.5 10.6 1267.2
Aesculus hippocastanum sweet chestnut 6 53.6 52.8 12.7 2.7 10.4 1658.9
Betula spp. birch spp. 3 40.9 43.0 17.3 3.9 8.2 866.8
Carpinus betulus common hornbeam 12 30.0 31.3 11.5 2.6 7.1 570.5
Fraxinus excelsior common ash 15 48.9 50.3 14.7 3.0 10.6 2110.6
Platanus × acerifolia London plane 14 79.2 83.4 20.8 3.6 12.1 4601.7
Prunus avium wild cherry 4 25.4 26.0 12.2 2.9 4.6 308.6
Quercus robur common oak 21 40.5 42.1 13.8 2.9 9.1 1750.4
Quercus rubra red oak 8 75.6 75.8 19.6 2.5 15.6 5319.6
Robinia pseudoacacia black locust 6 37.5 38.9 14.5 3.9 7.3 1406.9
Tilia × euchlora Caucasian lime 7 49.9 50.9 14.9 3.5 8.4 1412.6
Tilia cordata small-leafed lime 8 29.6 31.5 12.9 3.7 7.0 392.0
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Figure 1. Relation between predictors and above-ground biomass (agb) for different species. Legend
for all graphs is given in top left panel.

With regard to the auxiliary data of forest tree species, data from a German meta-
study aiming at building additive component biomass functions for forests tree species
were used [39]. These data (n = 2061 complete observations) originate from different sources
(both with regard to geographic origin and sampling method), but a substantial part of
the trees was also sampled using RBS (in contrast to the urban trees, forest trees were cut
before sampling). The data contain the same variables as the urban tree data set, except hgc
and remotely sensed cd. The missing d1 was estimated based on the other predictors using
the taper curve library BDAT [44,45]. Here, eight tree species, including four conifers, are
given, holding 25 to 666 observations (for a data summary, see Table 2).

Table 2. Overview on sampled forest trees per species. Species names with asterisk (*) indicate
availability in both data sets. The number of sampled trees per species, mean values for diameter in
breast height (dbh, cm), diameter 1 m above ground (d1, cm), tree height (h, m) and above-ground
biomass (agb, kg) are given. Data were compiled by [39] but originate from [46–50].

Species Name
n dbh d1 h agb

[n] [cm] [cm] [m] [kg]

Abies alba silver fir 29 41.8 43.4 25.8 1255.2
Acer pseudoplatanus sycamore maple * 25 28.3 29.1 22.6 493.2
Fagus sylvatica European beech 666 32.2 33.1 24.8 1078.8
Fraxinus excelsior common ash * 37 33.2 34.2 25.6 1144.5
Picea abies Norway spruce 616 32.7 34.3 24.9 581.0
Pinus sylvestris Scots pine 311 31.7 32.9 23.0 516.2
Pseudotsuga menziesii Douglas fir 130 31.0 32.0 24.7 580.5
Quercus spp. oak spp. * 247 31.9 32.9 22.9 955.7
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2.2. Methods

Aiming at stable biomass functions for at least the available fourteen tree species, we
passed through several steps of model building. In short, we fitted allometric models for
only the urban tree data, followed by a implementation of adjusted forest tree biomass
functions to be able to predict stored biomass and carbon also for coniferous tree species.
Finally, we implemented a common model for the urban and forest tree. All steps are
detailed further in the following sections.

The urban tree data set consists of fourteen tree species (Table 1). We decided for
a mixed model approach, because the number of observations is rather low for almost
all species, which makes it difficult to receive stable biomass models for each species
individually. Hence, we modeled the above-ground biomass (agb) for all species in one
model, but allowed for structured deviations from this population average, given the
factor “species” (spp). Additionally, we chose to fit the models on the (nonlinear) data
scale to avoid the need of back-transformation and bias correction (c.f. [51]). We started by
modeling the response y (= agb) by mixed allometric models of the general form

y = (α + a)
p

∏
i=1

Xβi+bi
i + ε (1)

with p predictors Xi, i = 1 . . . p and fixed-effect parameters α and βi for the population
average, random terms a and bi for species-specific deviations and investigated d1 and
further predictors, namely tree height (h), height of green crown (hgc) and crown diameter
(cd). The known phenomenon of heteroscedastic errors in biomass data was treated by
modeling the increasing variance species-wise as power of a variance covariate ν, using d1
or the estimated agb (ŷ) (c.f. Table 3, column 4, defining ν), i.e., var(ε) = σ2|ν|2δ (see [52],
p. 210f). To check if a generalized model that fits all species without grouping satisfies our
requirements, such a model was implemented as well. So far, all models were fit using
R [53] and the nlme-package [54]. All shortlisted models are given in Table 3, including
model equation, variance model, and random effect placement.

Table 3. Structural representation of the first set of fitted models (urban trees only). “mm” and
“gm” in the column name refer to “mixed model” and “generalized model”, respectively. In the
column model, the applied methodological framework is indicated, the column formula refers to
the fixed effects, and column ν gives details about covariate and grouping applied in modeling
heteroscedasticity, with ŷ referring to fitted values (estimated above-ground biomass). Column
RE indicates on which parameter random effects are finally placed. Column σ refers to residual
standard deviation.

Name Model Formula ν RE AIC σ

mm0 nlme α · d1β1 d1 a 1982.5 0.057
mm1 nlme α · d1β1 · hβ2 d1 | spp b1 1944.8 0.035
mm2 nlme α · d1β1 · hgcβ3 d1 | spp b1 1939.2 0.028
mm3 nlme α · d1β1 · hgcβ3 · cdβ4 d1 | spp b1 1907.3 0.030
mm4 nlme α · d1β1 · hgcβ3 · cdβ4 ŷ | spp b1 1905.4 0.122
mm5 nlme α · d1β1 · hβ3 · cdβ4 d1 | spp b1 1922.2 0.021
gm6 gnls α · d1β1 · hβ3 · cdβ4 d1 | spp - 1940.4 0.012

For us, two questions still remain: Firstly, how do we estimate the above-ground
biomass of conifer species in urban space if the fitted functions should potentially be used,
e.g., in tree inventories but only include deciduous species? Secondly, is it possible to
improve the predictive power of the models if additional data on forest trees are taken into
account? Regarding the first question, one option is to apply biomass functions developed
for traditional forests to the urban landscape, possibly incorporating an adjusting additive
term or scaling factor. We tested such an approach on the available urban deciduous tree
species (Table 1) using the biomass functions from the German National Forest Inventory
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(NFI), which were developed for 18 species ( fNFI , c. f. [48]). We estimated agbNFI for the
available urban trees and modeled the difference as well as the ratio to the observed agb.
Different hierarchical nonlinear models were tested, and a species-mixed allometric model
(c.f. Equation (1)) also proved to be a reasonable choice, both from theoretical and practical
considerations. Only d1 was required for modeling the absolute or relative deviations from
the NFI biomass functions (notation as in Equation (1)):

y = fNFI(spp, dbh, h) + (α + d1β+b)

y = fNFI(spp, dbh, h) · (α + d1β+b)
(2)

In this study, both dbh and d1 are available. If one of the two variables is not available
in an application, a simple linear model can be used to predict the other one (not shown).

This leads to the second question of whether combining urban and forest data can
improve the biomass functions. The idea is that a more comprehensive data basis builds a
more stable allometric relation between predictors (like d1 and h) and response (agb) and
lets the mixed-model framework statistically separate the different groups and species.
Eventually, predictions for urban conifers are derivable from this statistical approach.
Unfortunately, the merged data (a combination of Tables 1 and 2) miss complete information
on crown attributes (hgc and cd), as these are not available in the forest data set; therefore,
only d1 and h are the available predictors. The more challenging part in such a model is that
we now need to include two factor variables (species and origin), which are not hierarchically
organized (second level nested in first level) but instead are cross classified. This means
that each species can (potentially) occur in each level of origin (Sycamore maple can be
found in urban forest and traditional forests) as opposed to a hierarchical approach, where
each species is constrained to a certain origin (or each origin is constrained to a certain
species). We continue to use an allometric biomass model, allowing for random effects for
both factors to be (potentially) included on each parameter in the model equation:

y = (α + aaoo + aspp) · d1(β+baoo+bspp) · h(γ+caoo+cspp) (3)

Here again, Greek letters refer to fixed effects and the Latin letters are used for the
random effect terms, which are indexed for area of origin (aoo) and species (spp). The com-
plexity of such a nonlinear cross-classified mixed model makes convergence often difficult.
Indeed, we also experienced convergence issues even with models of reduced complexity
(i.e., less random effects) so that we switched from the data scale in Equation (3) to the
log scale, imposing back-transformation and bias correction on predictions (e.g., “naive
estimate”, see [51,55]). The model equation of the final best cross-classified mixed model
(CCMM), fitted using the R-package lme4 [56], is

log(y) = (α + aaoo + aspp) + (β + bspp) · log(d1) + (γ + cspp) · h (4)

using the tree height (h) untransformed, which yielded better results.
As a last approach, we simplified this model and included the area of origin as a

binary variable, being zero and one in the case of forest and urban origin (FU). This reduces
complexity and the 1-level mixed model could be fitted on the data scale making a bias
correction obsolete but predictions for conifers in urban areas possible. The equation of
this “factor” model (FM) is

y = (α + aspp + b · FU) · d1(β+bspp) · h(γ+cspp) (5)

All models were examined for the urban trees using leave-one-out cross validation,
both on the population and on the species level. The indicators of interest were RMSE (kg)
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and BIAS (kg):

RMSE =

√
∑n

i=1(yi − ŷi)2

n

BIAS =
∑n

i=1(yi − ŷi)

n

(6)

Additionally, for the species-specific evaluation, we calculated relative RMSE and
BIAS by dividing each by the species-specific mean agb. For all models, agb was estimated
as described in the case of Equation (4); back-transformation and BIAS-correction were
taken into account.

The predictions of the final CCMM model were also checked against the estimates of
the NFI biomass functions [48] using the R-package rBDAT [45] with respect to absolute
and relative RMSE and BIAS for the forest tree species of our data set. The data were used
during both model developments, and hence, concerns regarding improper comparison
are unfounded.

2.3. Sample Application

We evaluated the CCMM model using a small subset of a tree inventory containing a
subset of areas in Munich, Germany, at two different points in time (2007 and 2019). All
registered trees are characterized by the species name and the required model predictors.
In rare cases, trees were recorded as groups, i.e., data hold the number of trees of these
groups, mean diameter and height. The diameter was measured using a caliper, rounded
towards full centimeter, and the height was estimated by experienced arborists and given as
full meters. No measured above-ground biomass is available. Tree species, which were not
covered by the set of species for which biomass functions were developed, were assigned
to modeled species based on genus, habitus and expert knowledge. For few species (mainly
genus Populus), a biomass estimation correction was applied due to very unequal specific
gravity values between the model species (using Acer, being the best covered genus in our
model data) and assigned species. For that purpose, we used the specific gravity proportion
between both species according to Kollmann [43].

3. Results

In biomass studies, dbh is probably the most used predictor. But tree height is also
frequently used, as it positively correlates with biomass storage (e.g., [37]). Trees of same
diameter keep more biomass if larger in tree height [39,48]. When comparing urban to
forest trees, urban trees show different patterns of biomass accumulation with size (see
Figure 2 for the relations between d1 and agb). This finding is even more pronounced if
tree height is also taken into account. At the same time, tree height is very different for
deciduous urban trees by a given diameter in comparison to forest trees. Based on our data,
we can state that the measured deciduous urban trees are 10 to 15 m smaller than their
forest counterpart (Figure 3). Interestingly, in our data, there is actually no overlap in tree
height between both origins for all diameter classes. Simultaneously, applying a simple
biomass model considering predictors d1 and h, we find that deciduous urban trees contain
more biomass for the same dimensions than forest trees. This is also shown in Figure 3 by
the modeled contour lines (see also the Figure caption for an explanation and example).
In consequence, we can state that deciduous urban trees usually hold less biomass than
forest trees if only the diameter is considered, but if the comparison includes both diameter
and height, deciduous urban trees accumulate more biomass. This seemingly contradictory
result is resolved by the fact that urban trees (in our data) are usually smaller than forest
trees of the same diameter class and show a different morphology. The observed difference
in biomass diminishes as trees get larger and almost vanishes for trees with diameters
above 100 cm (d1). This at least is shown by our data, although only a small share of such
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large trees is present. Hence, for modeling and application, it is important to include a
height measure into the biomass models.
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Figure 2. Above-ground biomass (agb) of deciduous forest trees (black circles) and urban trees
(red squares) in relation to diameter in 1 m above ground. The continuous lines show a modeled
relationship between agb and d1.
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Figure 3. Comparison of observed (circles and squares, size proportional to above-ground biomass)
and modeled agb (contour lines) for deciduous forest (black circles) and urban trees (red squares)
with respect to d1, h and agb. No consideration of species in this graph. Each observed tree is
given by its diameter and height, while agb (modeled by a simple allometric model using these
two predictors) is given as contour lines in the background. Additionally, a functional relationship
between d1 and h is modeled and included (dashed lines). Horizontal and vertical lines are included
to ease the interpretation of the graph: a tree with d1 = 40 cm shows an average height of 28 m in
forests and only 14 m in urban space. Of course, a forest tree given these dimensions exhibits an
agb of approximately 1200 kg while an urban tree, which is only half in height, shows only 800 kg.
Interestingly, the models indicate for trees with the comparable dimension in d1 and h that urban
trees theoretically exhibit more agb than forest trees.

We tested different approaches for fitting urban tree biomass functions. The first set
of models are based on the 144 urban trees, and the second set encompasses 2205 trees,
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including forest trees. We evaluated these models using AIC (first set of models [57]),
model residual error, leave-one-out cross-validated root mean squared error (RMSE) and
mean error (BIAS).

The first set of models, fitted using the urban tree data only, show that all four selected
variables (d1, h, hgc and cd) contribute to explain the above-ground biomass of urban
trees. This is coherent since all variables describe trees in their volumetric extent (see also
Figure 1). The fitted mixed models had the random effect terms for factor species usually
placed on the parameter β1 belonging to d1. Heteroscedasticity (c.f. Section 2.2) was best
treated also by this covariate, except for model mm4, which makes use of the model
predictions to weight the errors (see Table 3). The best model by AIC (mm4, AIC = 1905.4)
makes use of d1, hgc and cd for the fixed effects with random effects set on the exponent of
d1. Considering the other fit statistics, i.e., residual standard error (σ) and cross-validated
RMSE and BIAS (see Tables 3 and 4), other models are not much worse, or even better.

In terms of predictive performance, mm5 shows the lowest group-level cross-validated
RMSE and BIAS (see Table 4, index “g” and “cv”). When it comes to applicability, the model
mm1 seems to be a good choice as well because it only requires easy-to-measure quantities
(d1 and h, no laborious crown measurements) and exhibits only a slightly higher bias than
mm5. The model results also indicate that the height of the green crown (hgc) might offer
more information than does the tree height (h)—at least for model fitting. Comparing cross-
validated results, it seems that using h instead of hgc delivers more accurate predictions
on average (models mm1 and mm5). The model gm6, a species-independent generalized
nonlinear least squares model, was fitted as a reference without an hierarchical approach
and, indeed, shows the smallest residual standard error. But all other fit statistics do not
show any advantage of that model.

Table 4. Performance for the first set of urban trees models expressed in the form of the RMSE (kg)
and BIAS (kg) for the group (index g) as well as the population effects (index p) of the model fit as
well as for the cross-validation (index cv).

Name rmseg rmseg, cv rmsep rmsep, cv biasg biasg, cv biasp biasp, cv

mm0 695.3 777.9 804.4 825.3 −36.9 −40.7 −80.8 −81.6
mm1 631.7 723.8 730.3 745.6 14.2 16.7 32.1 38.4
mm2 619.9 714.4 711.2 738.8 30.1 27.7 53.3 55.0
mm3 653.2 726.0 772.7 783.6 86.6 97.4 143.1 142.9
mm4 664.7 792.4 764.6 804.5 91.4 118.5 135.9 147.7
mm5 591.8 688.8 659.0 684.5 15.0 13.6 38.4 37.0
gm6 690.8 740.1 690.8 740.1 94.6 100.0 94.6 100.0

As mentioned above, our full data clearly indicate that there is a difference in the
above-ground biomass between urban and forest trees of the same diameter class. Modeling
the deviation between urban and forest biomass to be able to use well-approved forest
biomass functions using an additive or multiplicative correction factor does not lead to
satisfactory results: this type of model, based on adjusting forest tree biomass functions,
turns out to have the highest RMSEcv values of all tested models and moderately high
BIAScv values (see Table 5). The additive model shows lower RMSEcv but higher BIAScv
than the multiplicative model.

The CCMM model of Equation (4), an extension of the well-suited mm1 model (with
predictors d1 and h) with both urban and forest trees, shows best values for both RMSEcv and
BIAScv. Lastly, the simplified FM model, implementing Equation (5) using a binary variable
encoding forest and urban origin, exhibits a BIAScv high as−90.6 kg (almost nine times higher
than the best model in absolute values) and moderately high RMSEcv (see Table 5).

Summing up, the best-performing model for urban trees is the CCMM. To assure that
the CCMM also reproduces observed biomass of forest trees equally well, we compared the
bias-adjusted predictions with the predictions of the German NFI functions [48] for Norway
spruce, Scots pine, Douglas fir, European beech, oak and sycamore. Results indicate slightly
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higher RMSE values for all species except Douglas fir and sycamore (−26.9% to +17.8%)
and smaller absolute BIAS values for all species, except for Norway spruce (NFI: +8.0 kg,
CCMM: −12.8 kg). Highest (in absolute terms) relative BIAS of the CCMM model is −3.2%.

When evaluating the different models for particular species, results might show
different patterns (see Tables A1 and A2 in Appendix A for absolute and relative cross-
validated RMSE and BIAS). In this case, no model exhibits best results for all of the 14
considered deciduous tree species. The “best” models show smallest BIAScv values for only
four species and smallest RMSEcv values for only five species, respectively. Still, the CCMM
shows very good results: it is the only model with all relative BIAS values below 10% and
relative RMSE ranges between 10 and 36% (cf. Table A2). Similarly, mm1 and mm5 models
also perform well, but the largest BIAS is higher (for sycamore and birch, respectively).
Only for black locust is the result of mm1 better than that of CCMM considering RMSE
and BIAS. But both models (mm1 and mm5) exceed 10% BIAS for 3 and 4 tree species,
respectively. Moreover, both models can only predict deciduous trees. This is an advantage
of the CCMM model because coniferous trees in urban areas can be represented by the
integration of coniferous tree species data and the methodology of cross-classified mixed
models. An independent evaluation of the performance for these additional tree species in
the city is not possible with our data. But it has been shown that the model performs well in
all testable aspects (deciduous urban trees as well as coniferous and deciduous forest trees).

In summary, the finally proposed CCMM model (Equation (4)) uses only d1 and h as
predictors due to data limitations, but includes independent random effects given species
for the intercept and the two parameters. Random effects based on the origin (traditional
forest vs. urban area) were significant only for the intercept (aaoo), making it a scaling
parameter (this finding lead to the development of the factor model of Equation (5)). The
estimated parameters for the CCMM model are given in Table 6, and the random effects
for different species are given in Table A3 in Appendix B. The factor for correcting bias is
estimated to be 1.012081 (see [51,55]). As long as predictions correspond to the group level,
i.e., refer to a particular species and location as in our example, the given approach for
bias correction by e0.5σ2

is valid and corrects for the bias of transformation of the common
within-group error. For prediction on population level (i.e., setting the random effects to
zero), the uncertainty of the between-group error must be incorporated as well (e.g., see
Appendix 1 of [58]).

Table 5. Comparison of the different modeling approaches by RMSE (kg) and BIAS (kg). “mm1” and
“mm5” refer to the mixed models from Table 3 without forest trees and with, respectively, without
crown diameter (cd). “FB+D” and “FB*R” are adjusted forest tree biomass functions (Equation (2)),
“CCMM” refers to the cross-classified mixed model (Equation (4)) and “FM” is the factor model
from Equation (5). Column headings “n” show the number of observations of model fit (index fit)
and for the cross-validation (index cv), respectively. The indices “dec” und “con” refer to deciduous
and conifer tree species. Cross-validated RMSE and BIAS shown here refer to the group level of
the models.

No Model nfit ncv ndec ncon RMSE Bias RMSEcv Biascv

1 mm1 144 144 14 0 631.7 14.2 723.8 16.7
2 mm5 144 144 14 0 591.8 15.0 688.8 13.6
3 FB + D 144 144 14 0 790.1 22.0 802.2 21.7
4 FB*R 144 144 14 0 842.1 32.7 849.4 12.8
5 CCMM 2205 144 15 4 598.6 −10.7 667.1 −10.7
6 FM 2205 144 15 4 693.1 −76.8 780.9 −90.6
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Table 6. Parameter estimates of the CCMM model from Equation (4). The first three columns (α, β and
γ) give the estimated fixed effects. Column four to seven give the estimated standard deviations of
the independent random effect terms. σ gives the residual standard deviation of the model. Estimated
random effects for different species can be found in the Table A3 in Appendix B.

Model α β γ Std.aspp Std.bspp Std.cspp Std.aaao σ

CCMM −1.50880 2.02329 0.03487 0.13843 0.04568 0.00349 0.16024 0.15498

Sample Application

To show the applicability of the developed model, we applied the CCMM with iSiMan5
tree management software [59] to a small subset of data collected during a regular inventory
by TreeConsult Brudi & Partner in a residential area in the city of Munich, Germany.
The model estimates the stored above-ground biomass agb of the urban trees, which can
also be easily translated into stored amount of carbon by applying the respective carbon
content factor (see, e.g., [60,61]). If data for multiple points in time are available, in this
case for 2007 and 2019 (see Table 7), it even is possible to calculate the respective net
carbon fluxes.

Table 7. Carbon storage and agb for the example area in Munich by urban trees for 2007 and
2019. Indices “m” and “med” refer to mean and median values. A clear increase in storage can be
highlighted (+10.2%) despite a decrease in the number of trees.

Year Stems agb C CO2 d1m hm agbm d1med hmed

[a] [n] [kg] [kg] [kg] [cm] [m] [kg] [cm] [m]

2007 2763 854,176 411,950 1,511,856 22.6 10.2 309.1 19.1 9.0
2019 2260 941,050 453,472 1,664,241 26.4 10.2 416.4 23.9 9.0

The results for our example data show that in 2019, the urban trees stored about
941 tons of biomass, i.e., about 453 tons of carbon (c.f. Figure 4). This amount of storage
was achieved by 2260 trees, meaning an average amount of stored biomass of 416 kg per
tree. Compared to 2007, this is an increase of about 86 tons of biomass or a plus of 10.2%.
The average sink capacity for this set of trees is thus approximately 3.5 tons of carbon
per year, even though 503 trees were lost at the same time (−18.2%). By an increased
average diameter and constant tree height, the loss in numbers could be overcompensated
in terms of carbon storage. This highlights again the importance of managing, tending and
conserving especially middle-aged and old urban trees, which not only act as a carbon
storage but also serve further ecosystem services (social, economic, ecological, climatic
and aesthetical, see further, e.g., [1,3]). Since the developed equation of CCMM takes into
account the different tree species and their sizes, further analyses in combination with the
data from the tree inventory are possible.
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Figure 4. Predicted above ground biomass of the Munich data against d1 on double log scale. Black
squares indicate 2007 data and red circles refer to 2019 data. Vertical and horizontal lines mark the
average biomass and diameter. The two-part pattern is due to differences in tree heights and applies
to almost all tree species. On average, tree height remains constant, and biomass increase is driven by
diameter increase.

4. Discussion

There are several other, supposedly more modern, approaches to determine the
biomass and C-sink potential of urban trees (e.g., aerial and terrestrial laser scanning).
But the use of the close allometric relationships between simple-to-measure tree attributes
and the target variables biomass and carbon storage, especially in combination with regu-
lar and repeated inventory data, remains an accurate and low-cost method to determine
urban tree carbon storage. In addition, the method enables more modern techniques
(e.g., terrestrial laser scanning) to expand the data basis for model building.

Our data analysis shows that a simple transfer of forest biomass functions into urban
space needs adjustment because the allometry of urban trees differs strongly from those
of forest trees. Although the same tree size in terms of diameter (e.g., d1) can be found
in both landscapes, tree heights (and also crown habitus) differ significantly. In our data
set, there was actually no overlap in tree heights for any given diameter class, so the two
origins should be considered separate entities. Still, both are made up by trees, obeying
allometric rules. Differences in biomass between urban and forest trees are more prominent
for smaller tree dimensions and diminish as trees mature. This is probably because urban
trees grow under less light competition in less confined spaces and therefore grow less tall
and form larger crowns right from the very beginning. The larger trees get, both origins
resemble a more unconstrained habitus and thus show more comparable biomass and
carbon storage. As a clear result, we can state that there is a need for urban tree biomass
functions in addition to forest tree biomass functions.

The application of forest biomass models in an urban setting is an extrapolation of
those models, which requires a significant correction. Our approaches using the NFI
biomass functions, including correction, performed worse in comparison to most other
tested models. The models, developed for urban tree biomass, make use of the predictors
d1 and h, which are regularly measured during urban tree inventories. In the case of using
a diameter measured in a different height, e.g., in 1.3 m (dbh) as regularly used in forestry,
a simple linear regression can convert between both variables due to high correlation (see,
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e.g., [62]). It turns out by model cross validation that additional variables like height of
green crown (hgc) or crown diameter (cd)—although significant during model fitting—do
not or only slightly improve the models. Actually, our CCMM model shows best overall
statistics only requiring d1 and h.

We propose to use the CCMM model, which fits several species and origins (urban
and forest areas) at once. This model shows the best performance compared to models
only using data from urban areas. Hence, this model “learns” from forest tree data and
improves the modeled relationship. Additionally, it is possible to estimate yet unmeasured
crossings (e.g., conifer species in urban areas). Due to the lack of data, this case cannot
be validated, but we could show that the model behaves well in all statistically verifiable
aspects. It predicts forest biomass equally well as the NFI functions and outperforms the
urban tree-only models by better capturing the general allometric relation. But of course,
the difference between urban trees and forest trees is contained only in the random effect of
the scaling parameter. Thus, a similar difference between these two groups of tree species
of the two origins is assumed since both deciduous and coniferous trees have more space
and less competition in urban areas than in the traditional forest environment. Hence,
crown formation and height growth are likely to be modified in a similar direction for
both groups.

The CCMM uses the mixed-effects modeling framework. From a theoretical perspec-
tive, the validity of a model is assured, among other things, by checking the assumption
of normality for the estimated random effects. This is difficult if the factor variable has
only two levels, and often 5–6 factor levels are recommended as a minimum. Nevertheless,
the case of less factor levels is not uncommon (e.g., female vs. male), and some authors see
no reason to prevent the use of mixed models in such cases (e.g., [63], p. 247/275f). Our
results indicate the convergence and suitable parameter estimates of the CCMM model
as well as proper fit statistics so that we can assume the correctness and applicability of
the model.

The set of (urban) tree species included reflects the situation in Karlsruhe, Germany in
2011, and hence, it is not necessarily representative for other cities, not even in Germany.
Some tree species are represented only by a small number of samples, so it is important to
enhance our data by more tree species, especially if future development may be directed
toward more suitable tree species in a changing urban climate. There might also be
differences within tree species depending on different urban regions (c.f. [34]), requiring
more specific and localized models. Using the mixed-models approach, new tree species
(or subspecies with special habitus like Populus nigra italica) can be added into the model by
estimating their random effect even with a few observations only so that local situations can
be handled with little effort [64]. Besides that, collecting data from different cities—here,
TLS might be a suitable technique—might help with building a more general model, which
includes random effect terms for different cities and makes it possible to expand the model
geographically. The data of the forest trees instead originate from different studies (both
with regard to the geographic origin and sampling method).

As an example, we applied the CCMM model to a subset of a tree inventory in Munich,
Germany. The assignment of the encountered tree species to the model tree species, as well
as the regional transfer of the model, eventually leads to a certain inaccuracy of the result.
Yet, this is unavoidable, as the corresponding basic data are missing so far.

With the application of the model, and despite its certain inaccuracies in application, it
was possible to represent carbon storage at two different points in time and, thus, estimate
carbon fluxes over the period under consideration. The closer look at the performance
of the stand or even of the individual species or genera, also on different site types, can
thereby provide important advice for future tree management in urban areas, taking climate
protection and climate adaptation into account.
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5. Conclusions

Biomass functions are an easy and low-cost method to estimate biomass and carbon
storage, both in forests and urban landscapes. Although trees are the main carbon sink
and obey close allometric relationships in both ecosystems, the simple use of widely
available forest biomass functions in urban areas is not recommended. Our data show
clear differences in dimensions and biomass allocation. Hence, the development of specific
urban biomass functions is important. Based on data from urban and forest areas, we
present a new biomass model fitted for multiple species and origins at once. This model is
capable of differentiating between both origins and at the same time improving predictive
power compared to single-origin-models, i.e., the model “learns” from the allometric
relation of forest trees. The cross-classified mixed model (CCMM) can also estimate
unobserved groups, which in this case are conifers in urban areas. We checked the model
in all verifiable aspects and concluded that the model performs well both for urban as
well as forest trees. The assumption of comparable differences in habitus and biomass
allocation between urban and forest trees for both deciduous and conifer species needs to
be further investigated. The presented approach deserves further attention because it can
easily be extended, e.g., by including a city-group level or random effects estimation for
further tree species by means of the mixed-effects modeling framework. As an exemplary
application, we use the preferred CCMM model to estimate carbon storage in the area of
some residential neighborhoods in Munich for two points in time, showing an increase in
biomass and carbon storage despite a reduced number of stems and constant average tree
height. The main driver in this example is an average increase of diameter of about 4 cm
within 12 years. With such data on carbon storage and fluxes, management options can
be developed and evaluated. Further work should concentrate on currently less frequent
species, especially in view of rapid climate change and subsequent changes in tree species
composition. With that, a closer look into the carbon sink potential of different species
over time would be possible and improve knowledge of ecosystem services provided by
urban trees.
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Appendix A. Cross-Validated Species-Specific Results

Table A1. Overview on cross-validated measures of the different model approaches. The abbrevia-
tions “R” and “B” refer to RMSE (kg) and BIAS (kg), respectively. The corresponding indices relate to
column “no” of Table 5.

Species n R1 B1 R2 B2 R3 B3 R4 B4 R5 B5 R6 B6

sycamore maple 3 191.6 −172.9 216.7 −184.6 167.2 25.9 166.1 4.0 262.6 88.0 263.7 60.1
birch spp. 3 251.3 −133.5 210.4 −190.0 228.7 −96.3 218.8 −98.0 258.2 −5.3 137.1 −137.1
oak spp. 21 381.2 −49.3 562.6 −99.9 243.5 85.0 321.8 97.4 623.9 −149.9 963.0 −286.2
common ash 15 549.4 −14.2 675.8 9.7 274.9 4.9 360.8 −61.0 497.4 −47.0 753.7 −193.8
field maple 5 40.5 5.6 43.2 4.7 32.1 6.3 35.4 14.5 40.6 −2.1 44.4 1.1
common hornbeam 12 137.0 −16.4 139.0 −12.9 152.1 −22.3 165.0 −33.2 164.1 −9.4 259.5 −59.5
Caucasian lime 7 449.2 −181.9 241.7 −98.4 708.5 −234.7 890.6 −318.3 386.2 −105.9 576.8 −235.0
London plane 14 1909.5 182.8 1523.3 −67.5 2269.8 109.2 2381.7 168.9 1633.9 98.4 1669.5 −11.2
black locust 6 344.5 −86.6 252.6 144.9 101.6 75.1 81.9 52.1 426.4 −136.1 733.0 −243.4
horse chestnut 6 450.5 216.2 497.5 251.8 356.2 −89.2 402.1 24.8 432.0 150.3 394.8 152.9
red oak 8 1207.6 402.9 1363.2 449.6 1166.3 274.1 1167.3 208.0 898.6 236.9 839.2 116.6
Norway maple 32 346.4 −18.8 342.6 11.3 270.0 0.7 250.3 −8.4 368.6 −13.2 401.4 −53.3
wild cherry 4 78.1 −8.2 98.6 1.5 49.2 −9.9 56.4 −17.0 60.0 −3.8 76.6 −0.7
small−leafed lime 8 70.6 8.1 60.9 6.2 99.5 −32.0 196.3 −74.9 40.9 1.5 33.0 3.4

Table A2. Overview on cross-validated measures of the different model approaches. The ab-
breviations “rR” and “rB” refer to the relative RMSE (coefficient of variation) and relative BIAS.
The corresponding indices relate to column “no” of Table 5. Relative RMSE and BIAS are scaled by
species-specific mean observed above-ground biomass.

Species n rR1 rB1 rR2 rB2 rR3 rB3 rR4 rB4 rR5 rB5 rR6 rB6

sycamore maple 3 15.1 −13.6 17.1 −14.6 13.2 2.0 13.1 0.3 20.7 6.9 20.8 4.7
birch spp. 3 29.0 −15.4 24.3 −21.9 26.4 −11.1 25.2 −11.3 29.8 −0.6 15.8 −15.8
oak spp. 21 21.8 −2.8 32.1 −5.7 13.9 4.9 18.4 5.6 35.6 −8.6 55.0 −16.3
common ash 15 26.0 −0.7 32.0 0.5 13.0 0.2 17.1 −2.9 23.6 −2.2 35.7 −9.2
field maple 5 19.6 2.7 20.9 2.3 15.6 3.0 17.2 7.0 19.7 −1.0 21.5 0.6
common hornbeam 12 24.0 −2.9 24.4 −2.3 26.7 −3.9 28.9 −5.8 28.8 −1.7 45.5 −10.4
Caucasian lime 7 31.8 −12.9 17.1 −7.0 50.2 −16.6 63.0 −22.5 27.3 −7.5 40.8 −16.6
London plane 14 41.5 4.0 33.1 −1.5 49.3 2.4 51.8 3.7 35.5 2.1 36.3 −0.2
black locust 6 24.5 −6.2 18.0 10.3 7.2 5.3 5.8 3.7 30.3 −9.7 52.1 −17.3
horse chestnut 6 27.2 13.0 30.0 15.2 21.5 −5.4 24.2 1.5 26.0 9.1 23.8 9.2
red oak 8 22.7 7.6 25.6 8.5 21.9 5.2 21.9 3.9 16.9 4.5 15.8 2.2
Norway maple 32 25.2 −1.4 25.0 0.8 19.7 0.1 18.2 −0.6 26.9 −1.0 29.2 −3.9
wild cherry 4 25.3 −2.7 32.0 0.5 15.9 −3.2 18.3 −5.5 19.4 −1.2 24.8 −0.2
small−leafed lime 8 18.0 2.1 15.5 1.6 25.4 −8.2 50.1 −19.1 10.4 0.4 8.4 0.9

Appendix B. Parameter Estimates of the CCMM

Table A3. Parameter estimates of the cross-classified mixed model of Equation (4) for different species.
Parameter aaoo would take the value −0.15417 in case of forest trees.

Species α aaao aspp β bspp γ cspp

birch spp. −1.50880 0.15417 −0.05195 2.02329 −0.01990 0.03487 −0.00017
black locust −1.50880 0.15417 0.13679 2.02329 0.04328 0.03487 0.00066
Caucasian lime −1.50880 0.15417 −0.02768 2.02329 −0.02594 0.03487 0.00012
common ash −1.50880 0.15417 0.12836 2.02329 0.01542 0.03487 0.00143
common hornbeam −1.50880 0.15417 0.01220 2.02329 0.01543 0.03487 0.00200
douglas fir −1.50880 0.15417 −0.09424 2.02329 −0.01337 0.03487 −0.00441
European beech −1.50880 0.15417 −0.01902 2.02329 0.05054 0.03487 0.00331
field maple −1.50880 0.15417 0.04772 2.02329 0.01217 0.03487 0.00015
horse chestnut −1.50880 0.15417 0.00105 2.02329 0.02287 0.03487 0.00038
London plane −1.50880 0.15417 −0.01711 2.02329 −0.03266 0.03487 0.00054
Norway maple −1.50880 0.15417 0.02568 2.02329 0.00816 0.03487 0.00147
Norway spruce −1.50880 0.15417 0.18834 2.02329 −0.10420 0.03487 −0.00453
oak spp. −1.50880 0.15417 0.01319 2.02329 0.04164 0.03487 0.00117
red oak −1.50880 0.15417 0.04590 2.02329 0.02222 0.03487 0.00134
Scots pine −1.50880 0.15417 −0.28100 2.02329 −0.00441 0.03487 0.00027
silver fir −1.50880 0.15417 −0.03706 2.02329 −0.02470 0.03487 −0.00202
small−leafed lime −1.50880 0.15417 −0.10021 2.02329 −0.03197 0.03487 −0.00072
sycamore maple −1.50880 0.15417 −0.00223 2.02329 0.01602 0.03487 −0.00079
wild cherry −1.50880 0.15417 0.03127 2.02329 0.00939 0.03487 −0.00017
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